Entropy Estimation for Segmentation of Multi-Spectral Chromosome Images
نویسندگان
چکیده
In the early 1990s, the state-of-the-art in commercial chromosome image acquisition was grayscale. Automated chromosome classification was based on the grayscale image and boundary information obtained during segmentation. Multi-spectral image acquisition was developed in 1990 and commercialized in the mid1990s. One acquisition method, multiplex fluorescence in-situ hybridization (M-FISH), uses five color dyes. We previously introduced a segmentation algorithm for M-FISH images that minimizes the entropy of classified pixels within possible chromosomes. In this paper, we extend this entropy-minimization algorithm to work on raw image data, which removes the requirement for pixel classification. This method works by estimating entropy from raw image data rather than calculating entropy from classified pixels. A successful example image is given to illustrate the algorithm. Finally, it is determined that entropy estimation for minimum entropy segmentation adds a heavy computational burden without contributing any significant increase in classification performance, and thus not worth the effort.
منابع مشابه
Minimum entropy segmentation applied to multi-spectral chromosome images
In the early 1990s, the state-of-the-art in commercial chromosome image acquisition was grayscale. Automated chromosome classification was based on the grayscale image and boundary information obtained during segmentation. Multi-spectral image acquisition was developed in 1990 and commercialized in the mid-1990s. One acquisition method, multiplex fluorescence in-situ hybridization (M-FISH), use...
متن کاملSpectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملPlant Classification in Images of Natural Scenes Using Segmentations Fusion
This paper presents a novel approach to automatic classifying and identifying of tree leaves using image segmentation fusion. With the development of mobile devices and remote access, automatic plant identification in images taken in natural scenes has received much attention. Image segmentation plays a key role in most plant identification methods, especially in complex background images. Wher...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملAutomatic Sperm Analysis in Microscopic Images of Human Semen: Segmentation Using Minimization of Information Distance
Introduction The morphologic features of human sperms are key indicators for monitoring fertility problems in men. Therefore, automated analyzing methods via microscopic videos have become the most favorite policy in infertility treatment during the last decades. Materials and Methods In the proposed method, firstly a hypothesis testing framework was defined to distinguish sperms from backgroun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002